On the Modelling of Bubble Entrainment by Impinging Jets in Cfd-simulations

نویسندگان

  • M. Schmidtke
  • D. Lucas
چکیده

This contribution presents different approaches for the modeling of air entrainment under water by plunging jets in CFD codes. In simulations which include the full length of the jet and its environment, the process of bubble generation can not be resolved due to computational limitations. This is why the air entrainment has to be modeled in meso-scale simulations. In the frame of an EulerEuler simulation, the local morphology of the phases has to be considered in the drag model. In the impinging jet configuration, the air is a continuous phase above the water level but bubbly below the water level. Various drag models are implemented in the CFD solver CFX11 and their influence on the gas void fraction below the water level is discussed. The algebraic interface area density (AIAD) model applies a drag coefficient for bubbles and a different drag coefficient for the free surface. If the AIAD model is used for the simulation of impinging jets, the gas entrainment depends on the free parameters included in this model. The calculated gas entrainment can be adapted via these parameters. Therefore, an advanced AIAD approach could be used in future for the implementation of models (e.g. correlations) for the gas entrainment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of thermal mixing of shear thinning fluids in one-way opposing jets

In recent years, impinging streams have received increasing interest for their high efficiency in heat and mass transfer. This numerical study was conducted to investigate flow and heat transfer characteristics of one-way opposing jets of non-Newtonian fluids. Effects of Reynolds number impinging angle, momentum ratio and flow behavior index on mixing index were evaluated. The results showed im...

متن کامل

High-Fidelity Simulations of Bubble, Droplet, and Spray Formation in Breaking Waves

Plunging wave breaking is of great importance to ship hydrodynamics, including strong turbulence with large amounts of air entrainment, bubbles, droplets, jets, and spray. Previous experimental fluid dynamics (EFD) and computational fluid dynamics (CFD) studies on plunging wave breaking are mainly focused on the global structures of the wave breaking, such as wave elevation, jet, air cavity, an...

متن کامل

Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface

In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...

متن کامل

CFD Hydrodynamics Analysis of Syngas Flow in Slurry Bubble Column

In this paper, a CFD model of syngas flow in slurry bubble column was developed. The model is based on an Eulerian-Eulerian approach and includes three phases: slurry of solid particles suspended in paraffin oil and syngas bubbles. Numerical calculations carried out for catalyst particles, bubble coalescence and breakup included bubble-fluid drag force and interfacial area effects. Also, the ef...

متن کامل

Investigation of Heat Transfer Parameters of a Bundle of Heaters in a Simple Bubble Column Reactor Using CFD Method

Bubble columns are gas- liquid contactors that are widely used in chemical and bio- chemical industries. High mixing that result in high heat and mass transfer rates are amongst their advantages. Heat transfer in a bubble column having a bundle of heaters investigated and the variation of heat transfer coefficient with variation in heaters pitch to diameter ratios in a bundle of heaters reporte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008